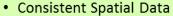


Maximising interoperability and discoverability of geodetic products and services

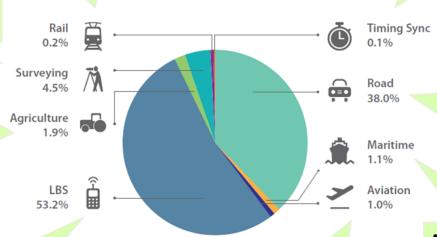
Nicholas Brown¹, Roger Fraser² and Gary Johnston¹

- 1. Geoscience Australia
- 2. Victorian Department of Environment, Land, Water and Planning


Background

- Geodetic services (like IGS) provide data for an increasingly diverse community
- In the past, the user community was predominantly those from the geodesy and surveying industry, governments and academia
- More recently there has been widespread uptake across society of accurate and reliable positioning information in new markets

Changing world ...


- Automated Train Management Systems
- Accurate Rail Centreline & Curvature Data
- Autonomous Trains (e.g. Mines and Ports)
- · Reduced Maintenance Costs

- Time Synchronisation (e.g. Energy, Finance, Telecommunications, Transport Networks)
- Time-Stamping (e.g. Financial Transactions and Network Issues)

- · Higher Productivity
- Lower Equipment Costs
- · Increased Yield
- Improved Safety
- Reduced Water Run-off, Soil Compaction, Soil Erosion & Fuel Usage
- Lower Emissions
- · Preserved Water Quality

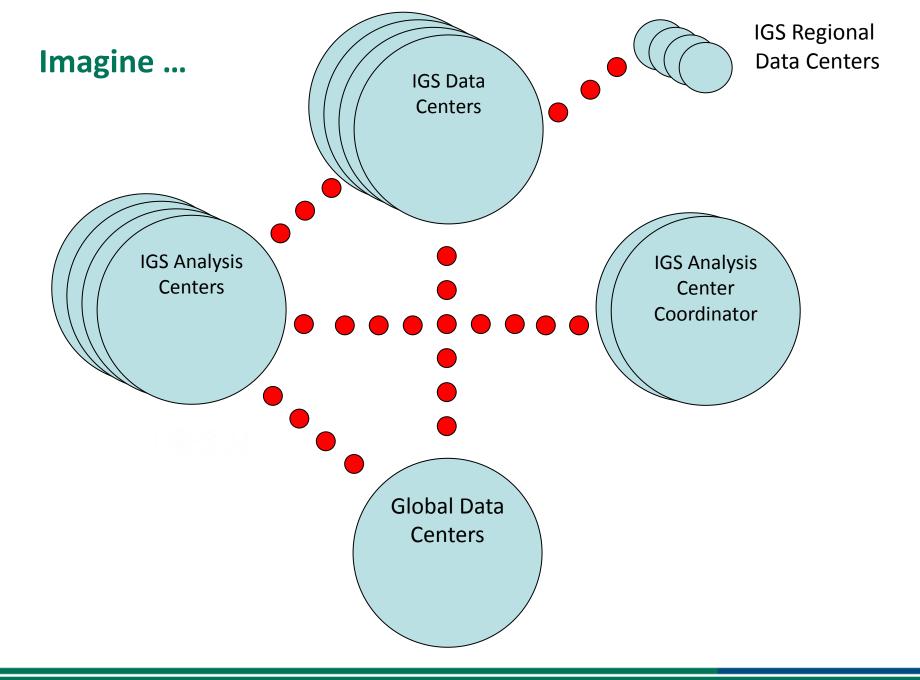
Cumulative core revenue 2013-2023

- · Autonomous Vehicles
- · Reduced Fatalities
- Congestion Avoidance
- · Reduced Emissions
- Reduced Road damage
- · Incident Detection
- Dynamic Navigation
- Situational Awareness

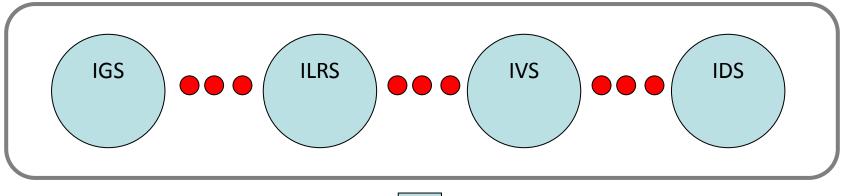
- Accurate Location Awareness
- Emergency Services
- Augmented Reality
- · Value-Added Applications

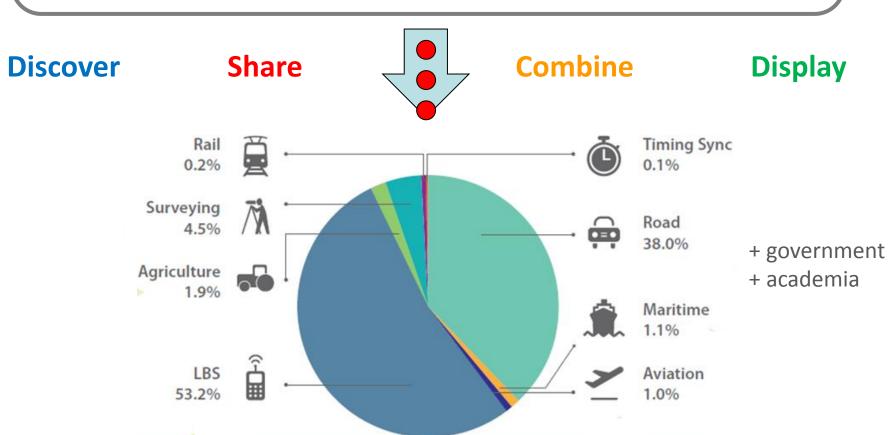
- · Safety-of-Life Services
- Integrity Monitoring
- Fuel Efficiency
- Internationally Standardised

- · Higher Tonnage
- Public Safety
- Environmental Protection
- · Fuel Efficiency
- · Internationally Standardised


European GNSS Agency (GSA, 2015)

Growing need for real-time data and interoperability


User requirements


- In order to service these user demands our geodetic data and the associated metadata need to be standardised, discoverable, interoperable and authoritative
- The continual increase in the volume and complexity of data means we also need to generate, transfer and use data and metadata via a machine readable form
- There is a need to develop a standard to encode* and exchange geodetic data and metadata

* (where standards are not currently available)

Reference Frame

The need for a geodetic metadata standard

- Well known standards are available for encoding fundamental geodetic data (e.g. SINEX, RINEX, ANTEX, SP3 etc.)
- But not all users (now and future) know where or how to look for information (e.g. coordinates in a SINEX file) to fit their requirements
- Users need to be able to query, access and retrieve data in near real-time without knowing how (e.g. format) or where (e.g. data centre) the information is stored
- No international standard is available which makes geodetic data and metadata openly accessible, machine-to-machine readable and interoperable for these emerging markets

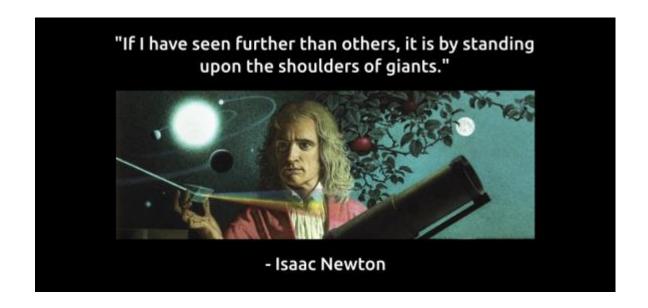
Proposed Solution - GeodesyML

- The geodetic community requires a standard which makes data and metadata:
 - discoverable and interoperable,
 - easily transferable via web services, and
 - based on internationally recognised standards.
- In response to these needs Australia and New Zealand have created the Geodesy Markup Language (GeodesyML)
- GeodesyML describes how geodetic data and metadata can be described and transferred in XML format
- GeodesyML is proposed Application Schema of the Geography Markup Language (GML) (ISO Standard)

Standards

Standards

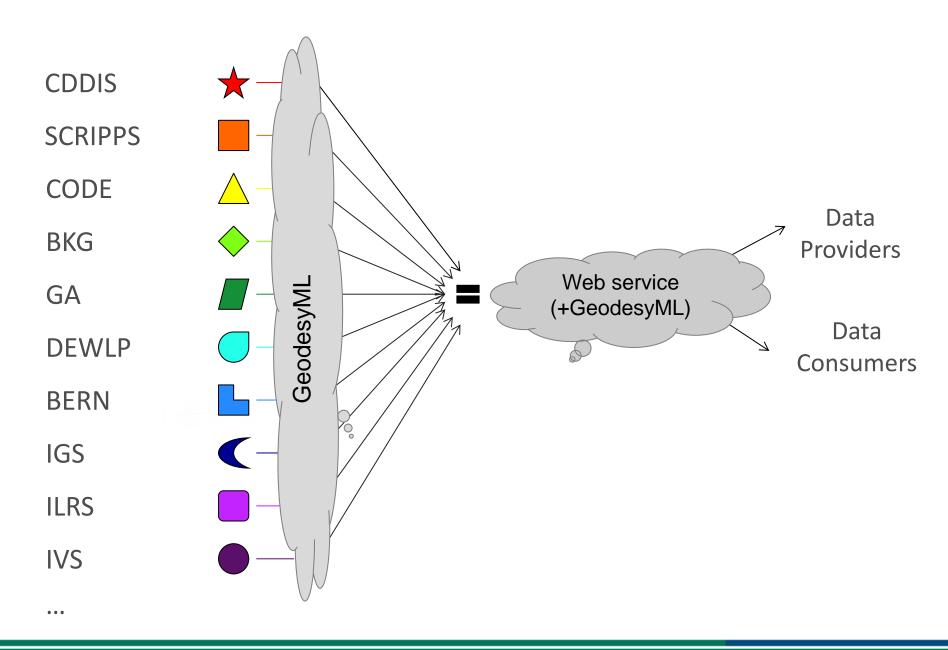
International Organisation for Standardization



+ GeodesyML (proposed GML Application Schema)

Extending GML

- GML provides a rich set of primitive objects like (geometry, coordinate reference system, time etc.)
- But not detailed / specific standards
 - e.g. GML can not be used to describe everything about a GNSS,
 VLBI, SLR, DORIS site.
- The geodetic standard needs objects like antenna, receiver, cable, adjustments etc.
- GML Application Schemas <u>extend</u> GML to meet the needs of a specific community of interest (e.g. SensorML, GeoSciML, GeodesyML (proposed))


GML Application Schemas

- Coordinate Reference System, Time, Unit of measures
- Many proprietary and open-source software vendors and database technology providers support GML

GeodesyML includes

- Standard way to encode and exchange:
 - GNSS related data and metadata
 - Terrestrial observations
 - Reference frames
 - Adjustments
 - Measurements
 - Site
 - Quality
 - Local Ties
- Future work will extend GeodesyML for the other techniques SLR, VLBI, DORIS.

Key points

- Users of our data are changing
- We need to do things more efficiently (and break habits!)
- Standards are needed for geodetic metadata to make it easier to Discover, Share, Combine & Display
- The current version is GeodesyML v0.2 (BETA)
- GeodesyML has been proposed by the IGS-DCWG as the new XML
 Standard for IGS to encode and transfer site log information
- More information (https://icsm.govspace.gov.au/egeodesy/)

Maximising interoperability and discoverability of geodetic products and services

Nicholas Brown¹, Roger Fraser² and Gary Johnston¹

- 1. Geoscience Australia
- 2. Victorian Department of Environment, Land, Water and Planning